Enhancement of AMPA-mediated current after traumatic injury in cortical neurons.

نویسندگان

  • P B Goforth
  • E F Ellis
  • L S Satin
چکیده

Overactivation of ionotropic glutamate receptors has been implicated in the pathophysiology of traumatic brain injury. Using an in vitro cell injury model, we examined the effects of stretch-induced traumatic injury on the AMPA subtype of ionotropic glutamate receptors in cultured neonatal cortical neurons. Recordings made using the whole-cell patch-clamp technique revealed that a subpopulation of injured neurons exhibited an increased current in response to AMPA. The current-voltage relationship of these injured neurons showed an increased slope conductance but no change in reversal potential compared with uninjured neurons. Additionally, the EC(50) values of uninjured and injured neurons were nearly identical. Thus, current potentiation was not caused by changes in the voltage-dependence, ion selectivity, or apparent agonist affinity of the AMPA channel. AMPA-elicited current could also be fully inhibited by the application of selective AMPA receptor antagonists, thereby excluding the possibility that current potentiation in injured neurons was caused by the activation of other, nondesensitizing receptors. The difference in current densities between control and injured neurons was abolished when AMPA receptor desensitization was inhibited by the coapplication of AMPA and cyclothiazide or by the use of kainate as an agonist, suggesting that mechanical injury alters AMPA receptor desensitization. Reduction of AMPA receptor desensitization after brain injury would be expected to further exacerbate the effects of increased postinjury extracellular glutamate and contribute to trauma-related cell loss and dysfunctional synaptic information processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

Stretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons.

Alterations in the function and expression of NMDA receptors are observed after in vivo and in vitro traumatic brain injury. We recently reported that mechanical stretch injury in cortical neurons transiently increases the contribution of NMDA receptors to network activity and results in an increase in calcium-permeable AMPA (CP-AMPA) receptor-mediated transmission 4 h postinjury (Goforth et al...

متن کامل

Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission.

Training rats to perform rapidly and efficiently in an olfactory discrimination task results in robust enhancement of excitatory and inhibitory synaptic connectivity in the rat piriform cortex, which is maintained for days after training. To explore the mechanisms by which such synaptic enhancement occurs, we recorded spontaneous miniature excitatory and inhibitory synaptic events in identified...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Inhibiting PTEN Protects Hippocampal Neurons against Stretch Injury by Decreasing Membrane Translocation of AMPA Receptor GluR2 Subunit

The AMPA type of glutamate receptors (AMPARs)-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI). But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 17  شماره 

صفحات  -

تاریخ انتشار 1999